
Bootstrapping: resampling with replacement.
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Each “bootstrapped sample” is the same size as the original set.

The principle of bootstrapping is that the population 
looks like the sample—but much larger.



Bootstrapping: resampling with replacement.

• A Monte Carlo technique for use when parametric approaches are 
not possible (such as when underlying distributions are unknown,
or closed-form error terms aren’t available for your application).

• Example: you use your entire data set to estimate a parameter; 
now what is the error of this parameter?

• More generally, how certain are we of the parameters we estimate
and the conclusions we draw?

• With unlimited resources, we would repeat our studies until the 
underlying distribution and the variation of every parameter is 
perfectly understood. 

• The principle of bootstrapping is that, with limited resources, the 
best estimate of future data is a resampled set from existing data.



Laser on

Background: Living cells can be deformed by laser pressure, producing an 
average power-law rheological response (strain = Ata) that identifies the cell 
as intermediate between an elastic solid (a = 0) and a viscous fluid (a = 1). 

Limitation: The best fit is a = 0.34, but with what error? 0.1? 0.0000001? (If 
another population exhibited a = 0.36, for example, could we conclude that 
the two groups are significantly different?)

Bootstrapping example 1: estimating the error in a fitted parameter.
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Adapted from Guck et al. Biophys J 88(5) (2005), Maloney and Van Vliet et al., Biophys J 100(1) (2010) 
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Bootstrapping solution: sample with replacement from the original data set 
(some values are repeated, some omitted).

Recalculate our parameter of interest and repeat thousands of times; the 
output changes slightly with each run.

The standard deviation of the collection of bootstrapped outputs, multiplied 
by √[n/(n-1)], is an estimator of the true standard error of the true output.

Bootstrapping example 1: estimating the error in a fitted parameter.
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Bootstrapping example 2: hypothesis testing.
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Background: Cells attach to their surroundings in part via transmembrane 
integrin molecules, which are hypothesized to adhere better in acidic 
(pH < 7.4) environments. It follows that in a pH gradient, an attached cell 
would migrate towards the acidic side because the trailing edge of the cell 
would detach more easily than the leading edge.

Limitation: Experimental limitations restrict data set size, so it is not clear 
whether the observed migration vectors or their mean are Gaussian. Is 
migration directed in either the pH gradient or the control?

Bootstrapping example 3: hypothesis testing with 
unknown distribution.
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Bootstrapping example 3: more hypothesis testing with 
unknown distribution.

Bootstrapping solution: over thousands of iterations, sample with 
replacement from the original data set and calculate a total resultant 
migration vector.

Drop the 5% most extreme vectors to obtain a 95% confidence region that 
will converge with sufficient iteration.

If this region doesn’t contain the origin, we can conclude that migration is 
directed. If it does, we can conclude that the appearance of directed 
migration could easily be due to chance.
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Bootstrapping example 4: 95% confidence regions.

Maloney and Van Vliet et al., Soft Matter 10(40) (2014) 



Caveats and possible pitfalls:

• Small data sets can be problematic; consensus is that n > 10–30 
is recommended.

• If the bootstrapped distribution is skewed, things get more 
complicated. (Actually a good thing: bootstrapping can help 
estimate parameter-fitting bias. Consult references.)

• Quality is only as good as the quality of the original experiment.

Summary recommendation:

Let’s move away from limited, assumption-containing parametric 
functions like se = √Σi(xi-x)

2/((n-1)n) and start routinely using available 
computational power to study the real uncertainty in the parameters 
we estimate and conclusions we draw.
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Questions?

MatLab: bootstrapped_sample = randsample(data ,length(data),true)
Mathematica: bootstrapped_sample = RandomChoice[data ,Length[data]]


