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The purpose of this note is to collect various ways of determining entropy and entropy changes.

1. Postulate: Entropy is postulated to be maximized at equilibrium with respect to small
changes in any and every generalized displacement. This makes it easy to figure out equilib-
rium conditions in the entropy representation because dS = 0 (and d2S < 0):

dS =
1
T

dU +
P
T

dV −
∑

i

µi

T
dNi −

Vσ
T

dε − · · · = 0

2. Fundamental definition:
S = −k

∑
i

pi ln pi

where pi is the probability of being in microstate i (so that
∑

pi = 1).

• With Ω microstates that are equally probable (the a priori equal probability assump-
tion), pi =

1
Ω

and S = k lnΩ.

• Configurational entropy: if N items can be arranged into groups of size n1, n2, n3, . . .
(where

∑
n j = N), the number of possible microstates is

Ω =
N!

n1!n2!n3! · · ·

Then
S = −kN

∑
j

x j ln x j

where xi =
ni
N .

• If there are only two ways in which any one item can be classified (e.g., N lattice points
on which either A or B atoms can sit) and the probability of one of the ways is x, then

S = −kN [x ln x + (1 − x) ln(1 − x)]

which is the configurational entropy of mixing for an ideal binary solution.

• Entropy is the property of an ensemble and has no microscopic counterpart. Like tem-
perature, it is a non-mechanical variable.

3. From a partition function: In the canonical ensemble, the partition function is Q, the
potential of interest is

F = F(N,V, E) = −kT ln Q

and as usual
dF = −S dT − p dV +

∑
i

µi dNi
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Therefore

S = −
(
∂F
∂T

)
V,N
= kT

(
∂ ln Q
∂T

)
V,N
+ k ln Q

In general, for any partition function Z, the entropy is

S = kT
(
∂ ln Z
∂T

)
+ k ln Z

where the variables held constant in the partial derivative are the same as those held constant
in the system (and in assembling the partition function).

4. Reversible processes:

(a) The closed-system entropy representations

dS =
1
T

dU +
P
T

dV =
1
T

dH −
V
T

dP

can be integrated for various reversible processes to give

∆S =
Q
T

(isothermal)

∆S = ncV ln
(
T2

T1

)
(isochoric)

∆S = ncP ln
(
T2

T1

)
(isobaric)

(b) For the potentials that use T as a natural variable (e.g., F and G), we have

S = −
(
∂F
∂T

)
V,N
= −

(
∂G
∂T

)
P,N

5. Ideal gas: Again assuming a closed system, for any process

∆S = ncV ln
(
T2

T1

)
+ nR ln

(
V2

V1

)

∆S = ncP ln
(
T2

T1

)
+ nR ln

(
P1

P2

)
6. Reversible work: If no heating occurs, there is no change in entropy. Reversible work

implies an energy flow with no accompanying entropy flow.

7. Open systems: Species entering an open system carry their own entropy.
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8. At a reversible phase transition: At constant pressure and temperature

∆S =
∆H
Tpt

which matches the earlier result for an isothermal reversible process. Note that the higher-
temperature phase always has higher entropy (that’s why it’s the higher-temperature phase).

9. Irreversible processes:

(a) Entropy is a state function, so find a sequence of reversible processes that accomplish
the same state, and calculate using those.

(b) From kinetics,

∆S =
"

L| ~F|2

T
dt dV

where ~F is a generalized potential gradient (e.g., ~F = −∇µ).

10. Maxwell and other relations:

(a) Using a Maxwell relation, we can show that, say,(
∂S
∂P

)
T
= −

(
∂V
∂T

)
P

so that
∆S = −

∫
VαVdP

which is approximately −VαV∆P for a condensed phase.

(b) Using the chain rule, we can show that(
∂S
∂V

)
P
=

(
∂S
∂T

)
P

(
∂T
∂V

)
P

so that
∆S =

∫
ncP

TVαV
dV

which may be of interest to somebody.

(c) Finally, using the Gibbs-Duham equation

−S dT + V dP −
∑

Ni dµi − m dh − · · · = 0

we can show that

S = V
(
∂P
∂T

)
µ,h,...
= −N

(
∂µ

∂T

)
P,h,...
= −m

(
∂h
∂T

)
P,µ,...
= · · ·
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11. Partial molar entropy: In a binary system, S = xAS̄ A + xBS̄ B (so dS = S̄ AdxA + S̄ BdxB)
and dxA = −dxB. Solving for S̄ A, we have S̄ A = S − xB

( dS
dxB

)
, which is the intercept rule.

12. Typical elemental material: Shown below is the (roughly) calculated constant-pressure
specific heat cP and molar entropy S for aluminum (Tm = 933 K, ∆Hm = 10.7 kJ mol−1,
Tvap = 2792 K, ∆Hvap = 294 kJ mol−1, ΘD = 396 K).

13. Forms of entropy: Anything that can take up energy—like vibrational modes or electrons
near the Fermi energy—can contribute to entropy.

• Configurational (solute atoms and/or point defects)

• Vibrational (typically higher in softer or less-close-packed materials. At high tempera-
tures, BCC may be favored over FCC or HCP)

• Electronic (very low in insulators, low to medium for semiconductors and metals, high
for ionic conductors)
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