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The purpose of this note is to describe the usefulness of generalized Hooke’s Law, or
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which describes in shorthand notation three equations for normal strain
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and three equations for shear strain
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Generalized Hooke’s Law applies in the case of three-dimensional loading of an isotropic ma-
terial. It lies in an intermediate position between the simplest case of uniaxial loading of a bar (the
scalar relationship oo = E¢) and general loading of anisotropic materials (the tensor relationship
o = Ceg, or 0;j = Cjjuen). Generalized Hooke’s Law is particularly useful for deriving effec-
tive moduli for various common stress states. These moduli (shear modulus, bulk modulus, biaxial
modulus, and so on) are frequently discussed but less frequently derived; knowledge of generalized
Hooke’s Law makes their derivation simple. Several of these stress states are examined here.

1. Uniaxial. Consider the case of a bar (by definition, a long, thin object) under uniaxial loading
along the /-axis. If the bar is sufficiently long and thin, we might assume that any lateral
internal stresses 0, and o33 are zero, and thus obtain uniaxial Hooke’s Law:
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There is also the expected lateral contraction associated with Poisson’s ratio:
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All shear strains are zero.
2. Pure shear. In the case of pure shear (07, nonzero, all other stresses zero), we have
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and all other strains are zero.



The ratio of the shear stress to the engineering shear strain y;; = 2¢;; is the shear modulus
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(Note: the existence of two different shear strains is confusing, but each has its uses. The

engineering shear strain y conveniently describes the angular decrease (in radians) in a right
angle under shear. The tensor shear strain £ makes shorthand equations like g;; = 1 (% %)
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work for any i and j.)

. Hydrostatic. Let us assume now that the stress state is hydrostatic (all shear stresses zero,
normal stresses 0y = 0 = 033 = p). The normal strain in any direction is

3 1-2v
-~ E

€ p

while all shear strains are found to be zero.

The normalized change in volume is
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where we have assumed the strains to be small. The ratio of the pressure to the normalized

change in volume is the bulk modulus
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. Equibiaxial plane stress. Consider the case when the stress in one direction is zero (033)
and the other two stresses are equal (07; = 05,). This is the case of equibiaxial plane stress:
the stress is confined to one plane (here, the /-2 plane), and the in-plane normal stress is
independent of direction. The in-plane strain is found via generalized Hooke’s Law to be
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The effective in-plane Young’s modulus (the ratio of in-plane stress to in-plane strain) is

termed the biaxial modulus £
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Note also that generalized Hooke’s Law provides a value for £33 in terms of the in-plane
strain:
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. Plane strain. Finally, consider the case where the strain in one direction (say, the direction
of the 3-axis) is constrained to be zero. This is the case of plane strain: the strain is confined
to one plane (here, the /-2 plane). An example of this state is found in the bending of plates.
If a plate is sufficiently wide in the 3-direction, the contraction in this direction is negligible
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during bending. For simplicity, let us assume that 0, = 0 but that o, exists and is related
to the bending stresses. By setting £33 = 0, we use generalized Hooke’s Law to obtain
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and find that the effective Young’s modulus under the plane strain condition is

€1 = 011

E

E =
1 -2

The bending stiffness of a sufficiently wide plate is thus slightly higher than that of a bar
(10% higher for a Poisson’s ratio of 0.3). In general, the application of a deformation con-
straint increases the effective stiffness of an object.

The following points may be useful:

e The relationships described above only applies to isotropic materials; anisotropic materials,
in general, need to be analyzed via the full relationship oo = Ce. But note some exceptions:
polycrystalline materials can often be modeled as isotropic due to the averaging of a large
number of independently oriented grains. Cubic materials in thin-film form can be modeled
as isotropic in the plane of the film under certain conditions (e.g., {100} or {111} surface
orientation).

e The simple relationship o = Ee applies only in the case of uniaxial loading of a bar, since
the lateral internal stresses 0, and o33 may not be zero for less elongated objects. When
considering uniaxial compression of a very wide, flat object, for example, we would not
generally be able to assume that lateral stresses are zero; we would more properly assume
that lateral strains are zero.

e Normal and shear stresses and strains are totally decoupled in isotropic materials. This
is actually the case for many anisotropic materials as well; in the cubic, tetragonal, and
hexagonal crystal types, for example, the coefficient C4 (among others) equals zero.! Recall
that Cy4 is contracted notation for C;;,3, which describes the relationship between normal
stress 0711 and shear strain &;3.

o Finally, the inverted version of generalized Hooke’s Law, in which stress is defined in terms
of strain, is occasionally useful and can be expressed as?
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