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The purpose of this note is to describe the usefulness of generalized Hooke’s Law, or

εi j =
1 + ν

E
σi j −

ν

E
σkkδi j

which describes in shorthand notation three equations for normal strain

ε11 =
1
E
σ11 −

ν

E
σ22 −

ν

E
σ33

...

and three equations for shear strain

ε12 =
1 + ν

E
σ12

...

Generalized Hooke’s Law applies in the case of three-dimensional loading of an isotropic ma-
terial. It lies in an intermediate position between the simplest case of uniaxial loading of a bar (the
scalar relationship σ = Eε) and general loading of anisotropic materials (the tensor relationship
σ = �ε, or σi j = Ci jklεkl). Generalized Hooke’s Law is particularly useful for deriving effec-
tive moduli for various common stress states. These moduli (shear modulus, bulk modulus, biaxial
modulus, and so on) are frequently discussed but less frequently derived; knowledge of generalized
Hooke’s Law makes their derivation simple. Several of these stress states are examined here.

1. Uniaxial. Consider the case of a bar (by definition, a long, thin object) under uniaxial loading
along the 1-axis. If the bar is sufficiently long and thin, we might assume that any lateral
internal stresses σ22 and σ33 are zero, and thus obtain uniaxial Hooke’s Law:

ε11 =
1
E
σ11

There is also the expected lateral contraction associated with Poisson’s ratio:

ε22 = ε33 = −
ν

E
σ11

All shear strains are zero.

2. Pure shear. In the case of pure shear (σ12 nonzero, all other stresses zero), we have

ε12 =
1 + ν

E
σ12

and all other strains are zero.
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The ratio of the shear stress to the engineering shear strain γi j = 2εi j is the shear modulus

G =
E

2(1 + ν)

(Note: the existence of two different shear strains is confusing, but each has its uses. The
engineering shear strain γ conveniently describes the angular decrease (in radians) in a right
angle under shear. The tensor shear strain εmakes shorthand equations like εi j =

1
2

(
∂ui
∂x j
+
∂u j

∂xi

)
work for any i and j.)

3. Hydrostatic. Let us assume now that the stress state is hydrostatic (all shear stresses zero,
normal stresses σ11 = σ22 = σ33 = p). The normal strain in any direction is

ε =
1 − 2ν

E
p

while all shear strains are found to be zero.

The normalized change in volume is

∆V
V
= (1 + ε)3 − 1 ≈ (1 + 3ε) − 1 = 3ε =

3(1 − 2ν)
E

p

where we have assumed the strains to be small. The ratio of the pressure to the normalized
change in volume is the bulk modulus

K =
E

3(1 − 2ν)

4. Equibiaxial plane stress. Consider the case when the stress in one direction is zero (σ33)
and the other two stresses are equal (σ11 = σ22). This is the case of equibiaxial plane stress:
the stress is confined to one plane (here, the 1–2 plane), and the in-plane normal stress is
independent of direction. The in-plane strain is found via generalized Hooke’s Law to be

ε11 =
1
E
σ11 −

ν

E
σ22 =

1 − ν
E
σ11

The effective in-plane Young’s modulus (the ratio of in-plane stress to in-plane strain) is
termed the biaxial modulus

M =
E

1 − ν
Note also that generalized Hooke’s Law provides a value for ε33 in terms of the in-plane
strain:

ε33 = −
2ν
E
σ11 = −

2ν
1 − ν

ε11

5. Plane strain. Finally, consider the case where the strain in one direction (say, the direction
of the 3-axis) is constrained to be zero. This is the case of plane strain: the strain is confined
to one plane (here, the 1–2 plane). An example of this state is found in the bending of plates.
If a plate is sufficiently wide in the 3-direction, the contraction in this direction is negligible
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during bending. For simplicity, let us assume that σ22 = 0 but that σ11 exists and is related
to the bending stresses. By setting ε33 = 0, we use generalized Hooke’s Law to obtain

σ33 = νσ11

ε11 =
1 − ν2

E
σ11

and find that the effective Young’s modulus under the plane strain condition is

E′ =
E

1 − ν2

The bending stiffness of a sufficiently wide plate is thus slightly higher than that of a bar
(10% higher for a Poisson’s ratio of 0.3). In general, the application of a deformation con-
straint increases the effective stiffness of an object.

The following points may be useful:

• The relationships described above only applies to isotropic materials; anisotropic materials,
in general, need to be analyzed via the full relationship σ = �ε. But note some exceptions:
polycrystalline materials can often be modeled as isotropic due to the averaging of a large
number of independently oriented grains. Cubic materials in thin-film form can be modeled
as isotropic in the plane of the film under certain conditions (e.g., {100} or {111} surface
orientation).

• The simple relationship σ = Eε applies only in the case of uniaxial loading of a bar, since
the lateral internal stresses σ22 and σ33 may not be zero for less elongated objects. When
considering uniaxial compression of a very wide, flat object, for example, we would not
generally be able to assume that lateral stresses are zero; we would more properly assume
that lateral strains are zero.

• Normal and shear stresses and strains are totally decoupled in isotropic materials. This
is actually the case for many anisotropic materials as well; in the cubic, tetragonal, and
hexagonal crystal types, for example, the coefficient C14 (among others) equals zero.1 Recall
that C14 is contracted notation for C1123, which describes the relationship between normal
stress σ11 and shear strain ε23.

• Finally, the inverted version of generalized Hooke’s Law, in which stress is defined in terms
of strain, is occasionally useful and can be expressed as2

σi j =
E

1 + ν
εi j +

νE
(1 + ν)(1 − 2ν)

εkkδi j

1Nye, Physical Properties of Crystals, Oxford University Press: London, 1985.
2Ugural and Fenster, Advanced Strength and Applied Elasticity, Upper Saddle River, NJ: Prentice Hall, 1995.
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