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ABSTRACT

Pseudo rigid body models(PRBM) may be used to accu-
rately and efficiently model the large elastic deflections of com-
pliant mechanisms. Previously published models have only con-
sidered end forces with no end moment or end moment acting
only in the same direction as the force. In this paper, we present
a model for a cantilever beam with end moment acting in the
opposite direction as the end force causing an inflection point.
As motivation for the development of such models, we present a
novel spatial micro-manipulator which can be modeled with this
PRBM. This micro-manipulator is being fabricated as a MEMS
device using a 3D fabrication process.

INTRODUCTION

In this paper, we present an improved method of mod-
eling compliant mechanisms, and as motivation for such
models, discuss the modeling and fabrication of a compli-
ant spatial micro-manipulator. Micro-spatial manipulators
differ significantly from their traditional counterparts in the
types of joints which can be used. While it is possible to
make a true revolute joint in a planar MEMS device, it
is not practical in a spatial micro-manipulator. Therefore,
flexural sections must be used instead of traditional joints.
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To analyze and control the motion of such a mechanism, it
is desirable to have a simplified model of the flexural sec-
tions. This can be accomplished by modeling the response
of an individual flexural section fixed at one end with loads
applied to the free end. This model can then be applied
to each of the flexural sections in a compliant manipulator.
Such models have been developed for cases in which only
force is applied to the free end (Howell, 1995) and moment
acts in the same direction as the end force (such a moment
is considered positive) (Saxena, 1998). These models have
been applied to mechanisms for which end moments in the
compliant sections can be assumed to be zero or positive,
such as in parallel-guiding mechanisms (Derderian, et al.,
1996). In the manipulator shown in Figure 1, it is clear
that end moments will be present in some of the compliant
sections, and may act in the opposite direction as the force,
possibly creating an inflection point. Therefore, we have
developed a model for a flexural section with end moment
acting in the opposite direction as the end force creating an
inflection point.

We wish to fabricate 3-D spatial micro-manipulators
in a parallel process (simultaneously fabricating many in-
dividual structures on a single silicon wafer). There are a
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Figure 1. 3 DOF spatial micro-manipulator being fabricated. The manipula-

tor has purely translational motion.

variety of micro-fabrication techniques available for produc-
ing 3-D structures. However, not all techniques are capable
of producing spatial micro-manipulators, and not all 3-D
processes can be done in parallel. Processes such as LIGA,
Deep Reactive Ion Etching (DRIE), and laser etching are
only capable of producing extrusions of two dimensional
patterns. Some processes capable of producing 3-D spatial
manipulators, such as micro stereo lithography and focused
laser /ion beam deposition, are serial processes (structures
on the wafer must be made one by one, greatly increasing
the time and cost of fabrication). Other processes, such as
component bonding and hinged structure fabrication, re-
quire manual assembly, making them poorly suited for low
cost, mass fabrication. Therefore, we are developing a 3-
D parallel fabrication process using DRIE to etch wafers
which are then bonded together. This process is capable
of producing overhangs and enclosed components, both of
which are necessary for spatial manipulators.

DESIGN OF 3 DOF SPATIAL MICRO-MANIPULATOR

A MEMS spatial manipulator may be fabricated in two
ways. The manipulator may be made in a vertical configu-
ration, which requires patterning and bonding many layers
together. Alternatively, the manipulator may be made in a
planar (singular) configuration using only two wafers. Af-
ter fabrication, the manipulator is moved out of the plane
and away from its singular configuration. The 3 DOF spa-
tial micro-manipulator, shown in Fig. 1, is manufactured
using the latter method. It is shown in Fig 1 after moving
away from its initial position. The manipulator has three

3D linkage
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out-of-plane

tevolute joint
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Out-ofplane joirt
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Figure 2. View of in-plane and out-of-plane joints which allow a manipulator
manufactured in a planar configuration to possess spatial motion.
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Figure 3. Process flow for SDMEMS planar process. The cross-section shown
is cut A-A shown in Fig. 2

limbs, each limb containing a base connected slider used for
actuation and four compliant sections used to approximate
revolute joints. The mechanism is based on a macro-scale
3 DOF parallel manipulator possessing only translational
degrees of freedom (Tsai and Stamper, 1996). The manip-
ulator investigated in (Tsai and Stamper, 1996) employs
base connected revolute joints which are actuated by mo-
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Figure 4. Layer names for 3DMEMS planar process.

tors. However, linear displacement is the easiest form of
actuation for MEMS devices, so the base-connected revo-
lute joints are replaced by base-connected prismatic joints
(sliders). In addition, the four bar mechanism in each limb
of (Tsai and Stamper, 1996) is replaced by two parallel com-
pliant sections. Using a parallel manipulator allows multiple
degrees of freedom (DOF) to be achieved while all actua-
tors remain on the base. In contrast, a multi-DOF serial
manipulator would require some form of actuation at the
intermediate joints. The use of a parallel manipulator also
increases the external load capacity of the output, since ex-
ternal loads are shared by multiple limbs.

The fabrication steps are shown in Fig. 3, which shows
a vertical cross-sectional cut taken along the length of one
of the limbs (cut A-A of Fig. 2). The starting SOI wafer
in step 1 is commercially available, but custom layer thick-
nesses can also be achieved by making the desired SOI wafer
from scratch using oxide growth, chemical-mechanical pol-
ishing (CMP), and thermal bonding. In step 2, a clear-
ance area for the slider is etched with reactive-ion etching
(RIE). This prevents the top of the slider from bonding to
the cap. Step 3 is a deep reactive-ion etch (DRIE) com-
pletely through the 50 pum layer of the first wafer, which
defines the main features of the first wafer. The shape of
the in-plane joint area is defined by the mask; the out-of-
plane joint area is etched completely through. A 2 um gap
is etched between the slider and the guides to allow slider
motion. The second wafer, which is used for both the out-of-
plane joint and the slider cap, is bonded to the first in step
4. In step 5, the entire second wafer is etched completely
away around the end of the slider via DRIE (right side of
Fig. 3, step 5). Additionally, a gap is etched between the
slider and the cap to allow slider motion. In the last step,
a 75 pm timed oxide etch is performed to release the slider.
It is necessary for the cap and guides to be much larger
than 75 pm so that they remain anchored to the substrate
of the first wafer. Alignment between wafers is achieved

by pre-etching successively larger DRIE alignment holes in
the periphery of each wafer, allowing direct topside optical
alignment without the need for an IR alignment system or
wafer-to-wafer alignment during the bonding process. This
approach enables device fabrication without the need for
costly, specialized alignment systems.

SOLUTIONS FOR LARGE DEFLECTIONS OF A CAN-
TILEVER BEAM

To develop a model for the large deflection of a flexural
section, the actual deflections are determined, and appro-
priate dimensions for a rigid body model are determined
through optimization. The Bernoulli-Euler beam equation,
which states that the moment at any point in a beam is
proportional to its curvature at that point, can be used to
solve large deflection problems. The Bernoulli-Euler equa-
tion can be written as

df &y
dz

where M is the moment, df/ds is the rate of change of an-
gular deflection along the beam, ET is the flexural rigidity
of the beam, z is the distance along the undeflected beam
axis, and y is the transverse deflection. For small deflec-
tions, dz/dy is small, and so (dz/dy)? can be neglected,
leading to the standard linearized beam theory. However,
in large deflections, such as the deflections seen in compliant
mechanisms, this term is large and may not be neglected.
In this case, Eq. (1) may be solved either through a classical
method using elliptic integrals (Howell, 1995; Bisshop, 1945;
Frisch-Fay, 1963; Mattiasson, 1981) or numerically (Saxena,
1998). The elliptic integral solutions are used here, as they
provide a simple method of determining when an inflection
point will occur.

Equation (1) can be rewritten as (see Howell, 1995 for
derivation)

ds EI EI

(2)
The loads P,nP, and M, are shown in Fig. 5 (n is the ratio
of horizontal to vertical force), and EI is the flexural rigidity
of the beam. In the following discussion, P is assumed to
be positive, and M, is assumed to be negative. The arc
length s is measured from the fixed end of the beam, and
the angle 6(s) is measured from the x axis at a distance
s along the beam. 6, is the angle of the free end of the
beam. The sign of df/ds is determined by 6, and the loading

P M,\?
il :I:\/Z—(—sin9+ncost9+sin90—ncos00)+( )
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Figure 5. Beam with external bending moment, vertical force, and horizontal
force causing an inflection point. n is the ratio of horizontal force to vertical
force, and (o, Yo) is the position of the free end of the beam. In this work,
M, is always negative.

conditions. If no inflection point exists, then the slope is
either monotonically increasing or decreasing, df/ds must
always be positive or negative, respectively. In this case, the
sign of df/ds is equal to the sign of 6,. If an inflection point
exists, then df/ds is positive before the inflection point and
negative after. Separating variables, Eq. (2) can be written
as

%ds =4 @ 2
\/2(— sinf + ncosf + sinf, — ncosb,) + %
(3)

Defining the following non-dimensional constants,

[ P2
a= B and

Eq. (3) may be written as

1M
K=5ppr Y

Q do
—ds ==+ . (5
l V2y/=sinf + ncosf + sinf, — ncosl, + k 5)
Integrating Eq. (5) and defining
A=sinf, —ncosb, + K (6)

yields a relationship between the angle of the free end of
the beam, 6,, and the applied load a.

1 [o% de
=4+ 7
“ \/5/0 VA —sinf +mncosf ™

The plus or minus sign is chosen as described earlier:
positive for monotonically increasing slope and negative for
monotonically decreasing slope. This sign convention en-
sures that « is always positive (when 6, is negative, the
integral becomes negative, because the upper limit of inte-
gration is less than the lower). This is consistent with the
definition of « given in Eq. (4), where « is a square root
which must always be positive.

To find the x and y displacements of the beam tip, df/ds
can be rewritten as:

ﬁ—ﬁd—x—ﬁcow

ds drds dx

dg dody df
£—@£—@sm9 (8)

Using Egs. (8) and (6), Eq. (5) can be written as (Howell,
1995)

0o
To _ 1 / c.os0dt9 )
l av2 Jo VA—sinf+ncosf
Yo 1 /90 sin 6 db
2 =4 10
l av2Jo VA —sinf +ncosf (10)

where (z,,y,) represent the deflected position of the free
end of the beam, as shown in Fig. 5. Equations (7), (9),
and (10) are functions of 6(s). If no inflection point ex-
ists, then 0(s) is either a monotonically increasing or mono-
tonically decreasing single-valued function. However, if an
inflection point exists, then 6(s) becomes a multi-valued
function. 6(s) increases from zero to ;, and then decreases
from 6; to 6,, where 68; is always greater than 6,. In this
case, the integrals must be split into two parts. df/ds is
positive from the fixed end until the inflection point, where
df/ds = 0. After the inflection point, df/ds is negative.
Therefore, in the first integral, the positive signs of Eqs.
(7), (9), and (10) are taken, whereas for the second inte-
gral, the negative signs are taken.

1 (/'% do N
a=——
VvV2\Jo VA —sinf +ncosb

0;
/ =) W
9., VA —sin@ +ncosé

T, 1 (/9 cos 0 df +
I av2\Jo VA—sinf +ncosf
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0;
/ c?s0d0 ) (12)
9, VA —sinf +ncosf
Yo _ 1 (/9 sin 6 df N
I av2\Jo VA—sinf+ncosf
0; .
/ s.1n¢9d6’ ) (13)
9, VA —sinf + ncosf

These equations can be solved using Jacobi’s elliptic
integrals of the first and second kind, denoted by F'(v,k)
and E(v, k), respectively.

Y d(9 Y
F(v,k) = / ——— E(v,k)= / V1 — ksin20d
0 V1—ksin26 0
(14)

The complete elliptic integrals of the first and second kind
are defined to be

), B(k) = B(3, k) (15)

Using Egs. (14) and (15), Egs. (11), (12), and (13) can be
written as (Byrd, 1954)

a= %f}r(%,’)’mk) (16)

To 1
7‘:Eﬁﬁ(‘nnﬁﬂ%yw$)—%fWMW$D+

vV 2n(n + X)(cos v + cosvg)) (17)

o 1
yT - W (77 (fF(’Yl;’727k) - 2fE(’le’Y27 k)) +
ny/2n(n + A)(cos v + cosvz)) (18)
where

fr(n; 72, k) = 2F (k) = F(n1,k) — F(72, k) (19)

fE(Wlary?ak):2E(k)_E(71ak)_E(723k) (20)

n=+1+n? (21)

1=2) (23)

. —ncosf, +sinf,
ve =sin™! <\/77 Y ) (24)

Equations (16)-(18) parameterize the deflection of the
free end of the beam as a function of the end angle, 8,, for
loading conditions which produce an inflection point. The
loading conditions are defined by the non-dimensional pa-
rameters £, n (which are ratios of applied moment/applied
force, and horizontal force/vertical force, respectively), and
a (which measures the magnitude of the loads). Given the
three load parameters, Eq. (16) must be solved numerically
for 6,, which is then used in Egs. (17) and (18). However,
if the equations are restricted to a range of 8, over which
a(b,) is a bijective mapping, then 8, can be used as a load
parameter instead of a. An inflection point exists when the
following relationships are satisfied:

n— |k +sinf, — ncosb,| >0 (25)
n + k +sinf, —ncosf, > 0 (26)
p—m<0,<¢ (27)
k>0 (28)
where
¢ = tarflL (29)
-n
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Figure 6. Deflection paths of the free end of the beam for loading conditions
which produce an inflection point. The dashed lines represent n = 1, and the
solid line represents n = —1. As m increases, the deflections increase. As K
increases, the deflection paths are shorter, closer to the origin, and resemble
straight lines.

Equations (25)-(28) come from the elliptic integral so-
lution (Byrd, 1954). The following constraint for compliant
mechanisms is also imposed on the deflection equations.

- S 00 S (30)

T
4

N

Since a compliant mechanism will not usually be deflected
more than 45°, and modeling larger deflections becomes
more complicated, the pseudo rigid body model is limited
to £45°.

METHOD OF OPTIMIZATION TO DETERMINE PRBM
Given a set of non-dimensional loads &, n, and « (or k,
n, and 6,), Egs. (25) - (28) can be used to determine if an
inflection point exists, and if so, Eqs. (17) and (18) can be
used to determine the deflection of the beam free end. For
any fixed values of k and n, sufficiently small values of a do
not produce an inflection point. Physically, this is due to the
non-dimensional parameterization given in Eq. (4), which
can be re-written as M, = v2EIxv/P. When P < 1, then
M, x v/P > P and so moment dominates, and the beam
deflects in the negative y direction (6, < 0) without an
inflection point. This solution is described by a different set
of elliptic integral equations. When P becomes sufficiently

NANAN

Figure 7. Pseudo rigid body model of a beam with an inflection point.

large, the effect of the force becomes more significant and
an inflection point will exist. Finally, there is a maximum
value of P (or equivalently a, or equivalently 6,) beyond
which the elliptic integral solution is no longer valid. Figure
6 shows how k and n affect the path traced by the free
end of the beam. For low values of k (regardless of n),
the path of the beam tip is close to a circular arc, closely
resembling the load cases investigated previously (Howell,
1995) and (Saxena, 1998). When the deflection path is a
circular arc, a model with one revolute joint and an angle
correction at the free end may be used, as in (Howell, 1995)
and (Saxena, 1998). However, for large values of x, the path
is closer to a straight line than a circular arc. Therefore, a
model with one pivot point is not adequate for a beam with
an inflection point. This suggests using a model with two
pivot points, as shown in Fig. 7. Two revolute joints and
three rigid bodies are used to better approximate the shape
of a deflected beam with an inflection point. The pseudo
rigid body model angle, O, is taken to be the angle of the
beam at the inflection point, 6;, which is found from the
elliptic integral solution.

O=60;=¢—cos! (cos(&o —-¢)+ %) (31)

Using 6; allows the pseudo rigid body to more closely re-
semble the deflected beam (increasing accuracy) and avoids
problems encountered when trying to determine a pseudo
rigid body angle using the position of the beam tip (which
can be negative, as seen in Fig. 6). The pivot locations are
described by 1 and s, as a fraction of the total length of
the beam. The angular displacement of the first revolute
joint is ©, and that of the second revolute joint is KO,
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where Kj is the ratio of the angular displacement of the
second joint to the first joint. Torsional springs are located
at each revolute joint, with stiffness constants K and K.

For a given k and 7, the range of 8, which produces an
inflection point is determined as described above. Using Eq.
(31), the corresponding range of © is found. For a pseudo
rigid body model with pivot locations and joint displace-
ment ratio 71, 2, and Ky, respectively, the position of the
output point is

g“‘l_” =y + (11— —72)cosO + vy cos Ky©O (32)

yTp = (1 =71 — 72)sin© + 72 5in K, © (33)
where (zp,y,) is the position of the output point of the
pseudo rigid body model. Given k and 7, the range of 6,
and the corresponding range of © is divided into N points.
For a set of PRBM parameters, the total error is defined
as the sum of the squares of the differences between the
position of the free end calculated from the elliptic integrals
and that obtained from the pseudo rigid body model.

N
1 . . 2
e= I8 E (Toi — xpz’)z + (zyoi = ypi) (34)
i=1

The optimal values of 1, 72, and Ky are ones which
minimize this objective function. The PRBM parameters
could be determined by directly minimizing Eq. (34); how-
ever, this would imply minimization of a function of three
variables (1,72, Ky), which could have many local minima.
To avoid this, the joint deflection ratio is determined sep-
arately from the pivot locations. Since 6, and © = 6; are
both given by the elliptic integral solution, a constant relat-
ing the two can be found through linear regression. Once
Ky is known, the optimization problem is reduced to two
variables (71, ¥2). An ideal model would be accurate for
all loading conditions and would be independent of load-
ing conditions. However, the beam tip deflection paths
and output angle relationships vary greatly with loading
conditions that cause inflection points. Therefore, a model
independent of loading conditions will have significant er-
ror, whereas a highly accurate model will necessarily vary
greatly with loading conditions. So it is desirable to com-
promise between simplicity and accuracy. If 74 and 7, are
independent, there are large variations for high values of 7.
Therefore, a predetermined relationship is set between the
pivot locations, such as y; = c¢7v2, where ¢ is a constant.

Figure 8. Ratio of joint deflections as a function of loading conditions.

Various values of ¢ were tried, and it was found that ¢ =1
decreased the variation in pivot locations without increasing
the error drastically. In this way, the optimization problem
is reduced to minimization of a function of one variable.

PIVOT LOCATIONS AND JOINT DEFLECTION RATIOS

As discussed previously, there is a finite range of 6, over
which an inflection point exists, which varies with x and n.
For values of n between -1 and 1, the range of 4, is greater
than 20°, some of which is in the range —45° < 6, < 45°.
However for n > 1, no inflection point exists with a 6,
less than 45°. For n < —1, the range of 6, becomes very
small (in most cases, about 1°). In these cases, the range
of output positions and « is correspondingly small. So for
n < —1, almost all values of a will not produce an inflection
point, and an inflection point will only occur for a very close
to the maximum permissible value. Therefore, an inflection
point model for these values of n is not considered here. For
1> n > —1, the values Ky and 7y obtained from the elliptic
integral solution, Eq. (16) - Eq. (18), and the optimization
of the error function, Eq. (34), are plotted in Figs. (8) and
(9).

From Fig. 8, it is evident that as Kk — 0, Ky — 1
for all values of n. This follows directly from Eq. (31).
When £k = 0, ©®© = 0; = 0, from (31), and so Ky = 1. In
this case, the model has one pivot point, and from Fig. 9,
v is approximately 0.2, which agrees with existing models
for no end moment (Howell, 1995). (Note that previous
models have measured pivot locations from the free end to
the single pivot, whereas in this case, v is measured from
the fixed end to the single pivot.)
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Figure 9. Location of pivot points as a function of loading conditions.

(b)

Figure 10. Free body diagrams of the pseudo rigid body model components:
(a) the intermediate link with a length of (1 — 1 —42), and (b) the output
link with a length of y2l.

DETERMINATION OF SPRING CONSTANTS

The pivot locations and ratio of joint deflections have
been determined; now we wish to find the torsional spring
constants for each of the pivots. To do so, a moment balance
equation is written for the second moving section, which has
a length of 2! (Fig. 10). The moment at the second joint
is denoted M.

My = Pyslnsin(¢ — KyO) + M, (35)

where 1 and ¢ are defined in Eqs. (21) and (29), respec-
tively. A moment balance equation is also written for the
first moving section. The moment at the first joint is de-
noted M;.

M; = P(1 — vy — y2)lnsin(¢ — ©) + M, (36)

A linear torsional spring is assumed, where the moment
produced is directly proportional to the angular deflection
with a proportionality constant of K. This relationship
can be expressed as

My = Ky (K —1)0 (37)

0.5 1 1.5 2

Figure 11.  Torsional spring constant of the first pivot as a function of loading
conditions.

M, = K,.0 (38)

where K has units of moment/radian. Combining Egs.
(35) - (38) to eliminate M; and My, and multiplying the
resulting two equations by [/ EI yields

Ky (K —1)0 = o®ynsin(¢p — Ky0O) — av/2k (39)

K10 = o?(1—vy1—v2)nsin(¢p—0)+a’yon sin(¢—KpO)—av/2k
(40)
where K is non-dimensional, and given by the relationship

l

KS = RS(E)

(41)

The optimal values of K, and Ky for a given set of
k£ and n is found through linear regression by varying the
pseudo rigid body angle ©. The results are shown in Fig.
11 and 12. From Eq. (39), it can be seen that as Ky — 1
(which happens when k — 0), the left hand side of Eq.
(39) goes to zero, but the right hand does not. Therefore,
Ko — o0o. Physically, this can be seen from the fact that
as Ky — 1, the angular displacement of the second joint
goes to zero. But, from the moment balance equation, the
moment cannot be zero. Therefore, K, must approach
infinity.

CONCLUSIONS

The fabrication of a 3-D micro-robot, using a two layer
SOI wafer bonding process, is presented. The process com-
bines wafer bonding with a series of etching steps to create
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Figure 12. Torsional spring constant of the second pivot as a function of
loading conditions.

in-plane and out of plane joints. After the devices are fab-
ricated in a single silicon plane, they can be “popped up”
out of the plane for operation. When designing compliant
mechanisms, particularly spatial mechanisms such as the
one shown here, cases are encountered where moment on
the end of the flexural section acts in the opposite direc-
tion as the force. Therefore, a model has been developed
for such loading conditions. An elliptic integral solution
was used to determine the deflection of an individual flex-
ural section and determine when an inflection point would
occur. Two joints were used in this model, and first joint
angle was taken to be the inflection point angle, allowing
the model to closely resemble the actual beam and improv-
ing accuracy. The location of the pivot points (measured
from each end) varied little and was found to be approxi-
mately 0.2]. The ratio of the joint deflections was found to
vary approximately linearly with k and n. Torsional spring
constants were also determined to account for the force and
moment required to deflect a compliant mechanism. This
model, when combined with existing models, can be used to
analyze compliant mechanisms subjected to arbitrary load-
ing conditions, which will be the subject of future study.
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