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• Strain is normalized deformation. We can express this relationship in differential form for
a bar undergoing axial deformation as d(strain) = dL

L , or an infinitesimal deformation dL
normalized to length L.

• We properly find the total axial strain e (known as the true strain) by integrating this expres-
sion from the initial length L0 to the final length LF:
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)
where ∆L is the amount of deformation (positive for elongation). The length L is kept inside
the integral because it changes as the bar deforms from length L0 to length LF.

• If ∆L is small compared to the length of the bar, then L ≈ L0 at all stages of the deformation
process and the 1

L term can be taken outside the integral. The resulting approximate strain ε
is known as the engineering strain:
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• The same result is acquired through a Taylor series expansion of e = ln
(
1 + ∆L
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)
. The Taylor

series
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is especially useful for estimating f (x0 + ∆x) when f (x0) is known and ∆x is small. In this
case, f (x) = ln(x), x0 = 1, and ∆x = ∆L

L0
. So we have
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≈ ln(1) + (1)−1
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• The relationship between true strain e and engineering strain ε is exactly e = ln(1+ ε). Both
strains, as normalized quantities, are unitless. Small strains are sometimes described as a
percent (e.g., 0.2%), or in µ, or micros (i.e., 2000 µ= 2000 parts per million= 0.2%).

• How close are the the values of e and ε? Plotted below are the engineering and true strains
for values up to 1. The agreement is quite good for strains of less than 0.1 (see inset).
Note that, by convention, an engineering material is considered to have yielded—deformed
beyond recovery—at an engineering strain of 0.002, or 0.2%. At this value, the difference
between engineering and true strain is less than one part in a thousand.
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• Characteristics of true strain e:
1. It’s the exact value, not an approximation.
2. Sequential strains can be added: if two strains e1 and e2 are executed sequentially, the total
strain is

e1 + e2 = ln
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)
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This is not the case with engineering strain, where the total strain is

L2 − L0

L0
, ε1 + ε2 =

L1 − L0

L0
+
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3. It’s used to characterize materials that deform by large amounts (considerable fractions
of their length up to many times their length). A quick look at the literature shows that true
strain has been recently used to characterize materials like polyamide yarn, epoxy, rubber,
and cartilage.
4. It’s geometrically symmetric: that is, if the strain associated with being stretched to n times
the original length is e, then the strain associated with being compressed to 1

n the original
length is −e.

• Characteristics of engineering strain ε:
1. It’s easier to calculate.
2. It’s overwhelmingly preferred in engineering analyses of materials that experience only
small strains (including the common construction materials concrete, wood, and steel, for
example, under normal use).
3. It’s symmetric in terms of displacements: that is, if the strain associated with being
stretched a distance ∆L is ε, then the strain associated with being compressed a distance
∆L is −ε.
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