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My goals are to

I.  convince you to always identify your error bars
(and demand that they be identified to you);

2. provide the definitions and context of fundamental statistical terms;
and

3. expose you to some modern statistical practices
(specifically, information-theory-based methods and bootstrapping).

The theme of this talk is making decisions (specifically, research conclusions) in the
face of uncertainty.

Before entering the materials science graduate program at MIT, my field was
mechanical engineering and microfabrication. When | changed fields to materials
science and cell biology, and began to research the mechanics and behavior of live
tissue cells, | was astonished at the tremendous uncertainty that researchers in the
life sciences encounter when working with complex living organisms.

Over the years, I've developed opinions on good practices in research. In terms of
drawing well-founded conclusions from data, | think researchers are off to a great
start if they (1) know how to relate uncertainty accurately to others, (2) know the
basic ideas and nomenclature of statistical testing, and (3) know one or two clever
ways to analyze data. So that’s exactly what this talk covers.




Why is the Gaussian distribution so common?

First, we have to address one question: why is the Gaussian distribution — the “bell-
shaped curve,” also known as P(x) o« exp(-x?) — so common? Many statistical tests
assume that the input data is Gaussian (i.e., that the data is drawn from some true
Gaussian distribution existing in nature). Many introductory statistical texts never
discuss anything else. It's even called the “normal” distribution. Why?




The central limit theorem says that, for any distribution,
the sum of enough samples will be Gaussian.

— Analytical distribution of eY,
where U is a random number
from O to |

1,000 runs selecting | sample —— 1000-run simulation histogram

from that distribution:

...selecting 3 samples
and averaging them:

...10 samples:

...30:

...100:

The ubiquity of Gaussian distributions arises from the so-called central limit
theorem, which says that the sum (and therefore the average) of enough samples
will be Gaussian, regardless of the distribution from which the samples are drawn.
This is an amazing result! (The usefulness of this result is unfortunately tempered
by the frequency that it is assumed without much basis.)

Before we look at an example, a note of explanation: the first box above contains a
theoretical probability distribution: a graph of expected frequency (y-axis) that one
will observe certain values of a certain parameter (x-axis). The remaining boxes
contain histograms, which display the actual number of observations (here, via
simulation), grouped into bins.

Now the example: consider the exponential function applied to a random number
between zero and one. This is an asymmetric, bounded distribution, but a
symmetric, smooth bell-shaped curve emerges after a dozen or so samples are
averaged together. By the time we have accumulated one hundred samples, the
Gaussian distribution is an excellent fit to the average.

The implication is that, when dealing with the average of a large enough number of
samples, we can assume the data to be Gaussian-distributed and base our
statistical reasoning and tests on this assumption. Most of the rest of this talk will
assume that parameters are Gaussian-distributed (except for a discussion of the
bootstrapping technique near the end).




How can we characterize variation?
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When conducting experiments that produce continuous values, we never observe
the exact same number over and over. Instead, we observe a distribution of values.
There are multiple ways to characterize this variation.

The complete data (here, simulated Gaussian data) is the most descriptive. But
large data sets are unwieldy, and we prefer something more succinct. We might
therefore choose to report variation in the form of a range.

Another metric, the standard deviation (SD), is defined as the square root of the
average squared deviation of the data from the mean. Compared to the range, it is
less sensitive to single extreme outliers. (The reason that the average in the SD is
calculated by dividing by n-1 instead of nis discussed on the last slide.)

The standard error (SE) is calculated from the SD and, assuming a Gaussian
distribution, represents the standard deviation not of the distribution but of the mean
(note this difference between SD and SE). From this parameter we can begin to
infer properties of the true mean.

The confidence interval, another inferential statistic, is defined and discussed on the
next slide; for now, let’s just note that all these metrics of variation are graphically
denoted by error bars. If these error bars aren’t accompanied by an identifying label,
what they signify is a mystery to the audience.




Range and standard deviation describe the spread of data;
confidence intervals let us infer where the mean might really be.

A single run of 40 coin flips, where the
o8 frequency of heads is characterized by the mean
and the 95% confidence interval.
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For six of the 100 runs, the
95% confidence interval doesn’t
include the true mean of Y.

(In frequentist statistics, all parameters are based on repetition. )

Confidence intervals (Cls) are defined in the context of frequentist statistics.
Frequentist statistics are based on repeated equivalent experiments, in which we
accumulate sample data in the hopes of estimating the properties of a true
distribution.

Here’s how Cls are defined: ninety-five percent of all 95% confidence intervals
contain the true mean. (We can use any percent value we like, but 95% is
especially common.) If we flipped a coin forty times while scoring heads as 1 and
tails as 0, and repeated this experiment many times, the resulting 95% Cls
(calculated according to the equations on the last slide) would very often contain the
true mean of 0.5. But about 5% of the time, they wouldn’t. If we didn’t know the true
mean (and we often don’t when running experiments), we’d have no idea whether
we were in the 95% group or the 5% group. Would using 99% Cls be better? They
would more often contain the true mean, but they would also be larger and therefore
less useful.

Note that a mistaken understanding of Cls would lead us to say that there’s a 95%
chance that a particular single CI contains the true mean. This isn’t correct; as
shown in the coin toss data above, a given ClI either does or does not contain the
true mean. Frequentist statistics do not describe degrees of belief. (An alternate
school of thought, Bayesian statistics, does incorporate and quantify belief and is
discussed later.)




Hypothesis testing: either something very unusual happened,
or the sample didn’t come from the expected distribution.

We ask: X ; = 2 ~2? (actually 1.96, the “z-statistic” for o = 0.05)
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When dealing with Gaussian-distributed data, it's handy to remember that the
majority of the data lie within one standard deviation, the vast majority of the data
within two, and essentially all the data within three.

Let’'s assume we’ve characterized some process and want to change the input
conditions to see if an output value also changes. (This is really the key issue of this
whole talk: in research, we want to see what parameters are relevant in natural
processes. In development, we want to control and optimize engineering
processes.) We’'ll sample this output once and compare it to the status quo.

A single measurement at location “1” or “2” would be unremarkable. If we measured
output value “3” above, though, we’d have to conclude that either the process was
unchanged (call this the null hypothesis) and something very unusual happened, or
that the process was changed (call this the alternate hypothesis) and we’ve
discovered some observable effect of changing the input. We can quantify this
decision-making process by setting an arbitrary limit (here, about two standard
deviations from either side of the mean). If the output is more extreme than this
threshold, we reject the null hypothesis.

Two errors are possible, though: the “type I” error of excess credulity (), where we
reject the null hypothesis even though it applied and something unusual did happen,
and the “type II” error of excess skepticism (), where we fail to reject the null
hypothesis because the measured output wasn’t very extreme... even though the
process was changed, and an alternate distribution applied.




Hypothesis testing enables decisions
in the face of uncertainty.

We ask: X ; = 2 ~2? (actually 1.96, the “z-statistic” for o = 0.05)
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When there are more than two groups, we use ANOVA,
a generalized t-test. (Why can’t we just perform multiple t-tests?)

We use stricter post hoc tests for comparing data sets that catch our
eye. (Why can’t we just use the regular t-test?)

One way of thinking about hypothesis testing is in terms of a signal-to-noise ratio. Is
the signal of a possible effect noticeable in the midst of system noise? For a single
data point drawn from a Gaussian distribution with mean p and standard deviation
o, we simply check whether the distance from the mean, normalized to the standard
deviation, is larger than 1.96. This is the “z-test,” with the z-statistic of 1.96 being
the number of standard deviations (left and right) that encloses 95% of the data.

Often we want to compare two groups whose true means and standard deviations
are unknown. We can estimate these parameters from the data itself, but the
threshold value that marks a statistically significant difference is more demanding
(larger than 1.96), especially when the sample sizes are small. In other words, the
smaller the samples, the less we know, the higher the effective noise, and the
higher the necessary signal to convince us that an effect exists. This test is the
widely used “t-test,” invented by William Gosset and published under the
pseudonym “Student” (thus, “Student’s t-test”).

A couple caveats: (1) Each t-test has a built in type | error rate of a. If we were to
collect several data sets and perform many t-tests to compare each possible pair,
we’re more likely to conclude that a data set is statistically significantly different,
even if it isn’t. This is no good. Analysis of variance (ANOVA) is a generalized
approach for comparing more than two data sets correctly. (2) It is assumed that the
data sets are independent, so we can’t select extreme results that catch our eye
after performing the experiment. If we could, then | could select the most opposed
confidence intervals on slide 5, compare those two runs, and conclude that the coin
is statistically significantly different from itself.




What is a p-value? (And what is it not?)

A p-value is the expected frequency, in many repeated experiments, of
observing at least as extreme a result, given that the null hypothesis is true.

Briefly, p = P ( data | null hypothesis ).
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It is not the probability of a false positive (this is o, the level
of significance), or the probability of a false negative (this is [3,
where |- is called the test’s power).

It is not the probability that the null hypothesis is true
(consider flipping | 1/20 heads; p = 0.41).

If greater than o, it does not signify that there is no effect.

It does not give information about the scientific importance
of the effect.

Like the confidence interval, the p-value is grounded in frequentist statistics. It can
only be interpreted in the context of equivalent repeated experiments. It is
calculated under a (somewhat odd) fundamental assumption: that the null
hypothesis is true. Like a reductio ad absurdum argument, the null hypothesis is
proposed in the hope of rejecting it. The key idea of frequentist hypothesis testing is
this: if the null hypothesis generally fails to predict results as extreme as our data (or
more extreme), then we should reject the null hypothesis. The

p-value is the test output that we compare to the significance level « to decide to
reject or not reject.

Unfortunately, there are many ways to misinterpret p-values, all of which can be
found in the literature. It is particularly common, for example, to see conclusions
that factor X has “no effect” on result Y just because the researcher obtained a p >
0.05. The logical error here is hopefully obvious.

Researchers have also been known to confuse statistical significance with scientific
importance. Prof. David Lykken wisely noted that “[t]he value of any research can
be determined, not from the statistical results, but only by skilled, subjective
evaluation of the coherence and reasonableness of the theory, the degree of
experimental control employed, the sophistication of the measuring techniques, the
scientific or practical importance of the phenomena studied.”




Can you judge significance (e.g., p < 0.05) by
looking at error bars?

I Are the two groups significantly different?

(Bars show mean * standard error, n = 30 for each group.)

:[ Error bar separation for p = 0.05

n=3 SE 95%Cl | n210 SE  95%ClI
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In none of these examples are the error bars “just touching.”

Some people try to identify statistical significance of a purported effect by checking
if the error bars are “just touching.” As far as | can tell, this method doesn'’t have
much basis. (Of course, if the errors bars aren’t labeled, it's especially pointless.)




The paradigm of hypothesis testing isn’t flawless.

The level of significance o is an arbitrary value (e.g., 0.05) that
separates publishable results from unpublishable results.

The null hypothesis is often known (and usually hoped) to be false.

Confidence intervals and p-values aren’t what they’re often
interpreted to be: the p-value is P(data|null hypothesis),
not P (hypothesis) or P (hypothesis|data).

The alternative hypothesis isn’t even necessarily evaluated.

It would be very unusual (e.g., a It would be extremely unusual (a chance
I-in-100 chance) to observe at least as of 535 in 300M) for a particular
extreme a result as X, given that the American to be a member of Congress.

null hypothesis is true. Person X is a member of Congress.

But we have observed resulc X. Therefore, we reject the null hypothesis

Therefore, with a p-value of 0.01, we that person X is American, due to a
reject the null hypothesis at a p-value of 0.000002. So significant!

significance level of oo = 0.05. What went wrong?

10 (after Cohen)

There are several peculiarities and limitations of frequentist hypothesis testing and
p-values. One notable weakness is that the null hypothesis can end up being
rejected without even considering the likelihood of alternate hypotheses.

The two examples given here demonstrate first a standard, and then a ludicrous,
conclusion reached through standard hypothesis testing. lllogical results like this
one are used to motivate the study and use of an alternative school of statistical
thought: Bayesian statistics.




Do you have disease Z?

A new diagnostic test is 99% effective.*

*99% of people with disease Z get a positive result from the test.

You take the test, which comes back positive.
Do you have disease Z?

(The rate of false positives is 0.1%)

If the disease occurrence is If the disease occurrence is

| in 1,000, and 100,000 people get I in 1,000,000, the chance of having the
tested (100 with the disease), we have disease is <0.1%, as there are far more
99 true positives and 100 false positives false positives than true positives.

(plus one false negative and 99,800 true
negatives). Chance of having disease Z:
99/199 = 50%.

P ( positive result | disease ) # P ( disease | positive result)

This is another example (really, the canonical example) used to highlight problems
with frequentist hypothesis testing and to motivate Bayes’ Theorem, which is
described on the next slide.

Let’s consider the scenario of receiving a positive result on a diagnostic test for
disease Z. We might think: since this diagnostic test seems so effective, and false
positives so rare, let’s take the positive result as proof that we have the disease. We
can even quantify our decision as p = 0.001. So significant!

In the nomenclature of hypothesis testing, we’ve rejected the null hypothesis (which
is that we're disease-free) due to the unlikelihood of getting a positive result if the
null hypothesis holds. Unfortunately for our reasoning, the alternative hypothesis
(which is that we have the disease) might be even less likely than the chance of
getting a false positive. Whoops! (Or hooray, since we’re probably disease-free.)

The bottom line is that, counterintuitively, a disease that is “99% effective” (but note
how this is defined) and with a very low false positive right might still give the wrong
answer almost all the time. As patients, we’d prefer to know

P (disease | positive result ) as opposed to P (positive result | disease ), which is of
more use to the test designers and manufacturers.

The more general concept is P ( data | hypothesis ) # P ( hypothesis | data ).




Bayes theorem allows (forces!) an evaluation of
existing knowledge (“priors”).

P(A)
P(A|B) =P(B|A) B

P (American)
P ( American | Congress ) =P ( Congress | American) ————
P (Congress)

300M/ 6.7B
=535/300M —— =] (correct)

535/6.7B

0 P (American)

P ( Not American | Congress ) =P ( Congre/ss«l/Not/American )
P (Congress)

=0 (correct)

Bayes’ Theorem, shown above, relates P (A |B ) to P (B | A); hopefully the value
of such a relationship is evident after the last two examples.

Bayes’ Theorem is one of the tools of Bayesian statistics, in which we first think
carefully about what is already known (called the prior distribution), then we collect
data, then we adjust our prior beliefs in light of new data (the output is called the
posterior distribution ). Note that the Bayesian approach gets the American
congressman problem right, under the condition that we enter additional
information: P ( American ) and P ( Congress member ).

Unlike frequentist statistics, Bayesian statistics allow us to talk about a degree of
belief. It is totally acceptable to speak in terms of the probability of a single event
that cannot be repeated. Another contrast: Frequentists regard the distributions as
real; that is, there exist physical laws in nature that we may approximate with our
limited experimental data. Bayesians regard the experimental data as the only thing
that is real; the physical law is merely a model to be fit.

A limitation to Bayesian statistics is that our prior knowledge is subjective and could
even vary from person to person, and is therefore often subject to vigorous debate.
But frequentist statistics can be subjective too, for example in our choice of the
alternative hypothesis that is duly accepted whenever the null hypothesis is
rejected.




Model fitting requires a sense of parsimony.
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Now that we’ve explored the difference between calculating data (given the null
hypothesis) and evaluating a hypothesis (given the data), let’s look at a concrete
example of choosing a suitable model (a type of hypothesis), given a set of data.

Which is the better model, the green curve or the red line? The green curve fits the
data perfectly, while the red line misses every average. If we were to collect a new
set of data points tomorrow, though, would the green curve still be such a great fit?
Given the error bars, one might suspect that the green curve is fitting quite a bit of
noise, not just the signal, and that the straight red line is the better model because it
uses fewer variables yet still seems to capture the underlying behavior of the
system.

We should be parsimonious with our fitted variables. As William of Ockham noted:
let us not needlessly accumulate explanations. Applied to research conclusions,
“Ockham’s Razor” metaphorically slices away superfluous parameters.

But how do we do this rigorously? How do we assign a penalty to excess variables,
for example?




The Akaike Information Criterion (AIC) is a statistical
parameter based on information theory.

AIC = Deviance + Parameters

number of parameters

2nk

=niIn (RSS/n) +

n—k-1
number of samples J / [

2k (for large n)

residual sum of squares

We rank AIC values; the best model minimizes AIC.
The “likelihood” of model i is exp(-AAIC, / 2).

We normalize likelihood values to get P (hypothesis|data),
with no arbitrary significance cutoff. Instead of testing the null
hypothesis, we are now comparing several (or many) models.

About forty years ago, Hirotsugu Akaike developed a way to compare models and
hypothesis by using some heavy-duty information theory mathematics. His metric,
the AIC, rewards good fits with a minimum of variables by including penalty terms
for the deviance of the model and also the complexity of the model. By minimizing
the AIC of each model, we hope to find a happy medium between accuracy and
simplicity.

In AIC ranking, there is no privileged hypothesis such as the null hypothesis and the
alternative hypothesis. In addition, we can evaluate as many models as we like
simultaneously. Some simple mathematics converts the AIC difference between
models to a “likelihood” value that has been compared to lottery tickets; just as
holding more tickets gives you a better chance of winning the lottery, a higher
likelihood value marks a model that is more likely to fit current and future data.

We can normalize each likelihood value by the total sum to obtain a probability, P (
hypothesis | data ). This is usually the figure of merit we want, the one that is not
available through hypothesis testing.

Data analysis software such as Mathematica and Origin now allow the user to
compare models by minimum AIC value, and also by related criteria (such as the
BIC, the Bayes Information Criterion) that work a similar way but use slightly
different penalty terms.




How should we compare these two groups?
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We return to the question of whether two groups came from the same distribution.
Perhaps these are strength measurements of a weld prepared two different ways;
perhaps they are growth measurements of cell cultures grown with two different
nutrients. Whatever the experimental system, we're back at the pivotal research
question: is the difference in the sample means due to chance, or a real effect?

The frequentist approach is to conduct a t-test, assuming that the data are
sufficiently normal. It is totally unremarkable for a p-value of 0.04 to be published
and used as evidence for a purported effect.

Earlier we noted that the p-value is the frequency we’d see at least this much
difference in the means, assuming there was no effect (i.e., p equals the probability
of the data given the null hypothesis of no effect), and how it would be nice to be
able to calculate rather the probability of an effect given the data. We realize that
hypothesis testing is itself a model fitting problem: should we be parsimonious and
describe both data sets by a single mean, or do the data sets differ sufficiently to
warrant using two means and thus concluding that an effect exists? The AIC can be
applied to such a question.

Under the AIC approach, we compare likelihoods of the two hypotheses and
calculate a 75% chance that an effect exists. Is this enough to publish? | think it’s
enough to justify repeating the experiment.




How should we model photon-induced
tissue cell deformation?
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We hypothesize that mesenchymal stem cells can be
distinguished and characterized by their mechanical
properties as evaluated by optical stretching.

16 Guck | et al. Biophys | 88(5) (2005)

| research tissue cell mechanics: how far cells can “feel” into their surrounding
environment and how single cells behave as deformable materials. To probe the
deformability of individual cells, | use a technique called optical stretching, in which
twin infrared laser beams are aimed at single cells floating in suspension. The
photonic pressure alone is enough to deform the cells, which stretch about 10%
over a few seconds after a step increase in laser power, recovering partially when
the laser power is reduced again.

The non-contact, high-throughput nature of this technique (developed by Jochen
Guck, Cambridge University) gives it great promise in diagnosing cell-altering
diseases, identifying sub-populations of heterogeneous cell populations such as
bone-marrow-derived mesenchymal stem cells, and studying the contributions of
cytoskeletal components to the mechanical behavior of single cells.

For this example, we are interested in finding the uncertainty of an fitted parameter
in an empirical model of cell deformability under load.




“Bootstrapping”: a technique for estimating variance.
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Best fit: a = 0.22 (but with what error?)

In bootstrapping we sample with replacement from our original
data set (some values are repeated, some omitted).

We recalculate our parameter of interest and repeat hundreds
or thousands of times; the output changes slightly with each run.

The standard deviation of the collection of bootstrapped outputs
is a good estimate of the true standard error of the true output.

We are looking at the time-dependent elongation of a suspended cell stretched by
photonic pressure. Although each individual cell’s response is too noisy to fit a
model accurately, we can average the responses together to get a smoother curve.
This data can then be fit to a governing equation, which is a power law in this case.
(The finding of a power-law exponent a = 0.22 is especially interesting to us, since
other groups have found a= 0.2 when investigating attached cells with other
techniques. At this point, this exponent appears to be a conserved, universal feature
of tissue cells.)

The problem lies in estimating the uncertainty of the fitted exponent. Is it
0.22 £0.17 0.22 £ 0.00001? We've already used all the data to get the fitted value;
there’s nothing left that we can use to extract a standard error. Or is there?

The bootstrap technique is perfect for this problem. The central concept of
bootstrapping is based on resampling: Lacking additional data, we simulate
additional data by resampling existing data with replacement. This resampled data
turns out to be remarkably valuable. (In a sense, we're pulling ourselves up by our
bootstraps, as the saying goes, by acquiring extra information from our existing
data).

We're going to repeat the resampling-with-replacement process many times (this is
shown in detail on the next slide). Each time, we’ll calculate our parameter of
interest. A major result of bootstrap theory is that the standard deviation of all the
bootstrapped outputs (multiplied by a correction factor close to unity) is a good
estimate of the standard error of that parameter of interest.




Bootstrap example (cont’d): resampling and results.

Fitted exponent

Original n cells {I 2 3 45 6 ...1288} 0.221
Sample | {I 4 6 9101l ... 1288} 0.268
Sample 2 {I 2 3 4 45 ... 1288} 0.262
Sample 3 {r 13 44 8 .. 1288} 0.214 0.18 020 022 024 026 028
Sample 1,000 {I 2 3 3 3 3 ...1287} 0.238

Average of N bootstrapped outputs:  0.224
SD of outputs:  0.0201
Estimated SE of fitted exponent ( SD x Vn/(n-1):  0.0201

In bootstrapping we sample with replacement from our original
data set (some values are repeated, some omitted).

We recalculate our parameter of interest and repeat hundreds
or thousands of times; the output changes slightly with each run.

The standard deviation of the collection of bootstrapped outputs
is a good estimate of the true standard error of the true output.

Here are the details of the bootstrap process, applied to the problem of identifying
the variance of the fitted exponent of the power-law model.

In sampling with replacement, some data are omitted and some repeated. Here the
data are not single values, but rather entire strain vs. time responses for each of
1288 cells.

We use the bootstrapping result that the standard deviation of the bootstrapped
outputs is a good estimate of the standard error of the parameter of interest. We
just need to multiply the standard deviation by a correction factor (the square root of
n/(n-1), where n is the data set size), which is essentially unity here.

Our results are: (1) The distribution of a appears to be Gaussian (this is not a
necessity for bootstrapping; in fact, an advantage of bootstrapping it that it is
amenable to analyzing non-Gaussian distributions.); (2) The average bootstrapped
a matches the original a (0.224 vs. 0.221), which indicates a lack of bias (bias is not
covered in this talk but is discussed in all introductory bootstrap references); (3) The
standard deviation in the exponent is 0.0201, which is what we wanted to find; (4)
Moving further, we could sort the boostrapped outputs, look at the 2.5% and 97.5%
percentiles, and conclude that the 95% confidence interval for ais [0.18, 0.26]. We
have thus identified a confidence interval by Monte Carlo methods alone, without
having to assume a Gaussian distribution or use a z-statistic.




Bootstrapping can also be used for hypothesis testing.
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Bootstrapping can also be used for hypothesis testing, giving us yet another way to
compare two groups to see if the difference in their means is likely or not to be due
to chance. Let’s consider the two groups that scored a p-value of 0.04 earlier.

Once again, there’s a parallel between hypothesis testing and model fitting. The null
hypothesis is that the true mean are identical; the alternative hypothesis is that
they’re different. Equivalently, we consider one model in which the groups came
from the same distribution, and another in which they came from different

distributions. The second model fits better, but requires an additional parameter (the
second mean).

The bootstrapping approach here is to merge all the data and repeatedly draw two
groups from the merged data. If the means are more different that they were in the
original data, score that run a “1.” Otherwise, score it a zero. After numerous runs,
the normalized score represents a bootstrapped p-value. It is literally a score of how
likely the differences in the original data sets could be due just to chance.

The bootstrapped p-value converges after 10 to 10* runs and agrees well with the
t-test p-value calculated earlier. (Note that we’re free to perform bootstrapping on
distributions that aren’t necessarily Gaussian, and textbooks on bootstrap theory
cover how unusual these distribution can get before even the bootstrap approach
breaks down.) For now, let’s just note that we have an additional tool at our disposal

to investigate how likely a research result is due to chance and hopefully to improve
our decision-making process.
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Standard deviation:
why use \| (% — x)2/ (n- 1) instead of \/ Z(x — x)2/ n ?

Although we generally don’t know a population’s true standard deviation, we
can estimate it from a sample. The second, simpler equation above (with n in
the denominator) provides a pretty good estimator of the population standard
deviation (), especially for large sample sizes; however, it generally
underestimates G. It is a biased estimator (unlike the sample mean, which is an
unbiased estimator of the population mean (l1)).

Here’s one way to see why: typically somewhere out in the population, not
included in our sample, are large positive and negative values. These extreme
values tend to cancel each other out when calculating averages, so they don’t
cause much of a difference between the sample and population means (over
the long run, they cause no difference at all). However, extreme values,
positive or negative, always increase standard deviation calculations because of
the squared term. Our sample estimator is therefore too small as a result of
missing them. We correct for this bias by using (n — |) in the denominator
instead of n, thus increasing slightly the value of our estimator-.
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Bootstrap example: description and data.

The bootstrap method is a way to estimate the uncertainty in any function of
a set of sample data. In this example, we will let the function be simply the
mean or the standard deviation of our sample, and the data will be drawn
from a known distribution to let us check the answers later. The real power
of the bootstrap method, however, comes in applying it to complex functions
of limited data from unknown (especially non-Gaussian) distributions. Lacking
additional data, we simulate additional data by resampling existing data. This
resampled data turns out to be remarkably valuable.

.,
Our sample data consists of ® e el o

®e% 0,0 % © o°
100 values drawn from a clearly 00® see0080°,

e % °
non-Gaussian distribution. The ~ * .o: °s o:: °.
data range from approximately P LRIEIR
1.0 to 2.7. B O oL
Sample data Histogram (frequency)

In the bootstrap method, we repeatedly sample 100 values from this data set
with replacement. Nearly always, some values will be repeated and some
omitted. We calculate the function(s) of interest from each sample, and repeat
hundreds or thousands of times.
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Bootstrap example (cont’d): resampling and results.

Mean SD
Original data {1.27, 1.74,2.13, 2.18, 1.94, 1.37,2.21, ..., 1.23} 1.66 0.469 ——
Sample | {1.13, 1.50, 2.48, 1.23, 1.04, 2.48, 1.28, ..., .67} 1.70 0.466
Sample 2 {1.46, 1.09, 1.04, 1.79, 1.76, 1.25, 1.06, ..., 2.40} 1.72 0.494
Sample 3 {1.88, 1.14, 1.12, 2.14, 1.50, 1.74, 1.07, ..., 1.59} 1.56 0.420
Sample 10,000 {1.59, 1.42, 1.94, 1.28, 1.36, 1.42, 1.62, ..., |.91} 1.66 0.496

Average of means: 1.66
A key result of bootstrap theory &
. .. SD of means: 0.0468
is that the standard deviation of
. — 95% ClI for the true mean: [1.57, 1.75]

a collection of bootstrapped
function values (e.g., mean or Average of standard deviations: ~ 0.465
standard deviation) is an SD of standard deviations: ~ 0.0237

estimator for the standard error
of the same function value of the
original sample.

Corroboration 2

— 95% ClI for the true standard deviation: [0.420, 0.495]

Corroboration | (see next slide) —
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Bootstrap example (cont’d): conclusions.

The bootstrapped function values converged to within 1% within 7,000 iterations.

Because of the large number of samples and because | know the distribution
from which the samples were taken, we can corroborate some of the
bootstrap estimates with analytical calculations.

Corroboration |: With 100 samples, we know from the CLT that the mean is
Gaussian-distributed. Therefore, we could have estimated the standard error
of the mean from the sample standard deviation divided by \n ( = V100), giving
0.0469. The bootstrapped estimate is 0.0468!

Corroboration 2: The distribution | used was eVl = |

the exponential function of a random number
between 0 and |. | calculated the mean to be ) |
(e = 1) = 1.72 and (with great effort) the standard
deviation to be [(e - 1)(3 - €)/2]"2 = 0.492. The
respective bootstrapped 95% confidence intervals
([1.57, 1.75] and [0.420, 0.495]) include these
values.

Histogram and actual distribution
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