[1] Tsai, L.-W., and R. Stamper. 1996. A parallel manipulator with only translational degrees of freedom. Proceedings of ASME Design Engineering Technical Conferences. Irvine, CA: MECH-1152.
[2] Kimball, C., L.-W. Tsai, D. DeVoe, and J. Maloney. 2000. Modeling and batch fabrication of spatial micro-manipulators. Proceedings of ASME Design Engineering Technical Conferences. Baltimore, MD: MECH-14116.
[3] Peterson, K. E. 1982. Silicon as a mechanical material. Proceedings of the IEEE. 70: 420-457.
[4] Madou, M. 1997. Fundamentals of Microfabrication. Boca Raton, FL: CRC Press.
[5] Koester, D., R. Mahedevan, and K. Marcus. 1994. Multi-user MEMS processes (MUMPs) introduction and design rules, rev. 3. Research Triangle Park, NC: MCNC MEMS Technology Applications Center.
[6] Rodgers, M. S., and J. J. Sniedowski. 1998. 5-level polysilicon surface micromachine technology: application to complex mechanical systems. Solid-State Sensor and Actuator Workshop. Hilton Head, SC: 144-149.
[7] Jaeger, R. C. 1988. Introduction to Microelectronic Fabrication. Reading, PA: Addison-Wesley.
[8] Elwenspoek, M., and H. Jansen. 1998. Silicon Micromachining. Cambridge, MA: Cambridge University Press.
[9] Bassous, E. 1978. Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon. IEEE Transactions on Electron Devices. ED-25: 1178-1185.
[10] Robert Bosch Gmbh, U.S. patents 4855017 and 4784720.
[11] Klaassen, E. H., K. Peterson, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley, and G. T. A. Kovacs. 1996. Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sensors and Actuators. A52: 132-139.
[12] Ishihara, K., C.-F. Yung, A. A. Ayón, and M. A. Schmidt. 1999. An inertial sensor technology using DRIE and wafer bonding with interconnecting capability. Journal of Microelectromechanical Systems. 8: 403-409.
[13] Maszara, W. P., G. Goetz, A. Caviglia, and J. B. McKitterick. 1988. Bonding of silicon wafers for silicon-on-insulator. Journal of Applied Physics. 64: 4943-4950.
[14] Harendt, C., W. Appel, H.-G. Graf, B. Höfflinger, and E. Penteker. 1991. Silicon on insulator material by wafer bonding. Journal of Micromechanics and Microengineering. 1: 145-151.
[15] Tong, Q.-Y., and U. Gösele. 1998. Semiconductor Wafer Bonding: Science and Technology. New York, NY: John Wiley & Sons.
[16] White, R. M., and S. W. Wenzel. 1988. Inexpensive and accurate two-sided semiconductor wafer alignment. Sensors and Actuators. A13: 391-395.
[17] Shoaf, S. E., and A. D. Feinerman. 1994. Aligned Au-Si eutectic bonding of silicon structures. Journal of Vacuum Science Technology. A20: 19-22.
[18] Bower, R. W., M. S. Ismail, and S. N. Farrens. 1991. Aligned wafer bonding: a key to three dimensional microstructures. Journal of Electronic Materials. 20: 383-387.
[19] Kern, W. 1993. Handbook of Semiconductor Wafer Cleaning Technology. Park Ridge, NJ: Noyes Publications.
[20] Pister, K. S. J., M. W. Judy, S. R. Burgett, and R. S. Fearing. 1992. Microfabricated hinges. Sensors and Actuators. A33: 246-256.
[21] Suzuki, K., I. Shimoyama, H. Miura, and Y. Ezura. 1992. Creation of an insect-based microrobot with an external skeleton and elastic joints. IEEE Conference on Micro Electro Mechanical Systems. Travemunde, Germany: 190-195.
[22] Harsh, K. F., V. M. Bright, and Y. C. Lee. 1999. Solder self-assembly for three-dimensional microelectromechanical systems. Sensors and Actuators. A77: 237-244.
[23] van Drieënhuiaen, B. P. 1999. Advances in MEMS using SFB and DRIE technology. Proceedings of SPIE. 3876: 64-73.
[24] Enikov, E. T., and B. J. Nelson. 2000. Three-dimensional microfabrication for a multi-degree-of-freedom capacitive force sensor using fibre-chip coupling. Journal of Micromechanics and Microengineering. 10: 492-497.
[25] Lin, C.-C., R. Ghodssi, A. A. Ayon, D.-Z. Chen, S. Jacobson, K. Breuer, A. H. Epstein, and M. A. Schmidt. 1999. Fabrication and characterization of a micro turbine/bearing rig. IEEE Conference on Micro Electro Mechanical Systems. Orlando, FL: 529-533.
[26] Reyntjens, S., and R. Puers. 2000. Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young’s modulus of the deposited material. Journal of Micromechanics and Microengineering. 10: 181-188.
[27] Johansson, S., J.-Å. Schweitz, H. Westberg, and M. Boman. 1992. Microfabrication of three-dimensional boron structures by laser chemical processing. Journal of Applied Physics. 72: 5956-5963.
[28] Shen, B., R. Izquierdo, and M. Meunier. 1994. Laser fabrication of three-dimensional microstructures, cavities, and columns. Proceedings of SPIE. 2045: 91-98.
[29] Reynaerts, D., W. Meeusen, and H. van Brussel. 1998. Machining of three-dimensional microstructures in silicon by electro-discharge machining. Sensors and Actuators. A67: 159-165.
[30] Tiensuu, A.-L., M. Bexall, J.-Å. Schweitz, L. Smith, and S. Johansson. 1994. Assembling three-dimensional microstructures using gold-silicon eutectic bonding. Sensors and Actuators. A45: 227-236.
[31] Howell, L. L., and A. Midha. 1995. Parametric deflection approximations for end-loaded, large deflection beams in compliant mechanisms. Journal of Mechanical Design. 117: 156-165.
[32] Jensen, B. D., L. L. Howell, D. B. Gunyan, and L. G. Salmon. 1997. The design and analysis of compliant MEMS using the pseudo-rigid-body model. ASME International Mechanical Engineering Congress and Exposition. Dallas, TX: 119-126.
[33] Liu, Z. 1999. Silicon wafer bonding for 3-dimensional MEMS. Master’s thesis, University of Maryland at College Park.
[34] Cha, G., W.-S. Yang, D. Feijoo, W. J. Taylor, R. Stengl, and U. Gösele. 1991. Silicon wafers with cavities bonded in different atmospheres. Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications. Phoenix, AZ: 249-259.
[35] Huff, M., A. Nikolich, and M. Schmidt. 1991. A threshold pressure switch utilizing plastic deformation of silicon. International Conference on Solid-State Sensors and Actuators. San Francisco, CA: 177-180.
[36] Riethmüller, W., and W. Benecke. 1988. Thermally excited silicon microactuators. IEEE Transactions on Electron Devices. 35: 758-762.
[37] Noworolski, J. M., E. H. Klaassen, J. R. Logan, K. E. Peterson, and N. I. Maluf. 1996. Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators. Sensors and Actuators. A55: 65-69.
[38] Huang, Q.-A., and N. K. S. Lee. 1999. Analysis and design of polysilicon thermal flexure actuator. Journal of Micromechanics and Microengineering. 9: 64-70.
[39] Que, L., J.-S. Park, and Y. B. Gianchandani. 1999. Bent-beam electro-thermal actuators for high force applications. IEEE Conference on Micro Electro Mechanical Systems. Orlando, FL: 31-36.
[40] Maloney, J. M., D. L. DeVoe, and D. S. Schreiber. 2000. Analysis and design of electrothermal actuators fabricated from single crystal silicon. ASME International Mechanical Engineering Congress and Exposition. Orlando, FL: 233-240.
[41] Comtois, J. H., M. A. Michalicek, and C. C. Barron. 1998. Electrothermal actuators fabricated in four-level planarized surface micromachined polycrystalline silicon. Sensors and Actuators. A70: 23-31.
[42] Lin, L., and M. Chiao. 1996. Electrothermal responses of lineshape microstructures. Sensors and Actuators. A55: 35-41.
[43] Oden, J. 1967. Mechanics of Elastic Structures. New York, NY: McGraw-Hill.
[44] Huang, Q.-A., and N. K. S. Lee. 2000. A simple approach to characterizing the driving force of polysilicon laterally driven thermal microactuators. Sensors and Actuators. A80: 267-272.
[45] Meirovitch, L. 1997. Principles and Techniques of Vibrations. Upper Saddle River, NJ: Prentice Hall.
[46] Pearson, G. L., and J. Bardeen. 1949. Electrical properties of pure silicon and silicon alloys containing boron and phosphorous. Physical Review. 75: 1.
[47] Touloukian, Y. S., R. W. Powell, C. Y. Ho, and P. G. Klemens. 1970. Thermophysical Properties of Matter. New York, NY: IFI/Plenum.
[48] Okada, Y., and Y. Tokumaru. 1984. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. Journal of Applied Physics. 56: 314-320.
[49] Ugural, A. C., and Fenster, S. K. 1995. Advanced Strength and Applied Elasticity. Upper Saddle River, NJ: Prentice Hall.
[50] Pai, M., and N. C. Tien. 2000. Low voltage electrothermal vibromotor for silicon optical bench applications. Sensors and Actuators. A83: 237-43.
[51] Incropera, F. P., and D. P. DeWitt. 1981. Fundamentals of Heat and Mass Transfer. New York, NY: John Wiley & Sons.